Prediction on lengths of stay in the postanesthesia care unit following general anesthesia: preliminary study of the neural network and logistic regression modelling.

نویسندگان

  • W. O. Kim
  • H. K. Kil
  • J. W. Kang
  • H. R. Park
چکیده

The length of stay in the postanesthesia care unit (PACU) following general anesthesia in adults is an important issue. A model, which can predict the results of PACU stays, could improve the utilization of PACU and operating room resources through a more efficient arrangement. The purpose of study was to compare the performance of neural network to logistic regression analysis using clinical sets of data from adult patients undergoing general anesthesia. An artificial neural network was trained with 409 clinical sets using backward error propagation and validated through independent testing of 183 records. Twenty-two inputs were used to find determinants and to predict categorical values. Logistic regression analysis was performed to provide a comparison. The neural network correctly predicted in 81.4% of situations and identified discriminating variables (intubated state, sex, neuromuscular blocker and intraoperative use of opioid), whereas the figure was 65.0% in logistic regression analysis. We concluded that the neural network could provide a useful predictive model for the optimization of limited resources. The neural network is a new alternative classifying method for developing a predictive paradigm, and it has a higher classifying performance compared to the logistic regression model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses

Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...

متن کامل

Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models

Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...

متن کامل

Credit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks

The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...

متن کامل

پیش‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎بینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی

  Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Korean Medical Science

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2000